Paralelograms: Atšķirības starp versijām

No ''testwiki''
Pāriet uz navigāciju Pāriet uz meklēšanu
imported>Gustamons
Saistība ar Viviani teorēmu
 
(Nav atšķirību)

Pašreizējā versija, 2023. gada 28. decembris, plkst. 18.23

Paralelograms ABCD

Paralelograms ir četrstūris, kuram pretējās malas ir pa pāriem paralēlas (vārds "paralelograms" ir cēlies no grieķu "παραλληλ-όγραμμον" jeb "paralēlas taisnes").

Īpašības

Paralelogramam piemīt šādas īpašības:

  • pretējās malas ir paralēlas un vienāda garuma;
  • pretējie leņķi ir vienādi un jebkuru divu secīgu leņķu summa ir 180°;
  • paralelograma diagonāļu krustpunkts sadala katru no diagonālēm divās daļās ar vienādu garumu;
  • paralelograma smaguma centrs atrodas tā diagonāļu krustpunktā (jebkura taisne, kas iet caur paralelograma diagonāļu krustpunktu, sadala paralelogramu divās daļās ar vienādu laukumu);
  • visu četru malu garumu kvadrātu summa ir vienāda ar diagonāļu garumu kvadrātu summu (paralelograma likums).
  • attālumu summa no jebkura punkta P iekšā paralelogramā līdz malām ir neatkarīga no P atrašanās vietas (Viviani teorēmas paplašinājums)

Laukuma aprēķināšana

Paralelograma laukumu S var aprēķināt pēc šādām formulām:

  • Ja B ir paralelograma pamata garums un H ir paralelograma augstums, tad
S=BH.
  • Ja divas secīgas paralelograma malas veido leņķi θ un to garumi ir B un C, tad
S=BCsinθ,   kur sin θ ir leņķa θ sinuss.
  • Ja divu secīgu paralelograma malu garumi ir B un C (BC) un tā diagonāles veido leņķi γ, tad
S=|tgγ|2|B2C2|,   kur |tg γ| ir leņķa γ tangensa absolūtā vērtība.

Izmantojot virsotņu koordinātas

  • Ja vektori a=(a1,a2) un b=(b1,b2) atbilst divām secīgām paralelograma malām un
M=(a1a2b1b2)
ir 2×2 matrica, kas satur vektoru a un b komponentes, tad atbilstošā paralelograma laukumu var izteikt ar šo vektoru pseidoskalāro reizinājumu jeb matricas M determinantu:
S=|ab|=|det(M)|=|a1b2a2b1|.
  • Ja vektori an un bn atrodas n dimensiju telpā un
M=(a1a2anb1b2bn)
ir 2×n matrica, kas satur vektoru a un b komponentes, tad atbilstošā paralelograma laukums ir vienāds ar
S=det(MMT),
kur MT ir matricas M transponētā matrica.
  • Ja a=(a1,a2), b=(b1,b2) un c=(c1,c2) ir trīs paralelograma virsotņu koordinātas, tad tā laukumu var izteikt ar determinantu no 3×3 matricas, kuras pirmās divas kolonnas satur doto vektoru x un y koordinātas, bet visi pēdējās kolonnas elementi ir vienādi ar 1:
S=|det(a1a21b1b21c1c21)|.

Īpašie gadījumi

  • Rombs — paralelograms, kam visas malas ir vienāda garuma;
  • Taisnstūris — paralelograms, kam visi leņķi ir vienādi;
  • Kvadrāts — četrstūris, kas vienlaikus ir gan rombs, gan taisnstūris (tā visi leņķi ir vienādi un tāpat arī visas malas).

Skatīt arī

Ārējās saites

Veidne:Sisterlinks-inline Veidne:Enciklopēdiju ārējās saites