Lī reizinājuma formula

No ''testwiki''
Versija 2025. gada 10. janvāris, plkst. 00.17, kādu to atstāja imported>InternetArchiveBot (Izglābti 0 avoti un 1 atzīmēti par novecojušiem) #IABot (v2.0.9.5)
(izmaiņas) ← Senāka versija | skatīt pašreizējo versiju (izmaiņas) | Jaunāka versija → (izmaiņas)
Pāriet uz navigāciju Pāriet uz meklēšanu

Lī reizinājuma formula (pazīstama arī ar nosaukumiem Lī–Trottera jeb Lī–Trottera–Kato reizinājuma formula) ir sakarība[1][2]

eX+Y=limn(eX/neY/n)n,

kur X un Y ir N × N reālas vai kompleksas matricas un e apzīmē matricas eksponentfunkciju. Formula nosaukta par godu norvēģu matemātiķim Sofusam Lī, Heilam Troteram (Hale F. Trotter)[3] un japāņu matemātiķim Tosio Kato.[4]

Lī reizinājuma formula ir vispārinājums sakarībai

ex+y=exey,

kur x un y ir reāli vai kompleksi skaitļi un e ir parastā eksponentfunkcija. Matricām šāda sakarība izpildās tikai tad, ja tās komutē jeb X Y = Y X. Vispārīgā gadījumā matricām šī sakarība neizpildās jeb

eX+YeXeY,

tāpēc jālieto Lī reizinājuma formula. Šī formula ir nozīmīga kvantu mehānikā[5][6][7] un kvantu skaitļošanā.[8]

Atsauces

Veidne:Atsauces

Ārējās saites