Eksponentvienādojums

No ''testwiki''
Pāriet uz navigāciju Pāriet uz meklēšanu

Eksponentvienādojums ir vienādojums, kur nezināmais atrodas kāpinātājā. Piemēram, 3x=27, 6x363=x2 Eksponentvienādojumu risināšanā nepieciešams izmantot pakāpju īpašības un definīcijas.[1][2]

  • Par reāla skaitļa a pakāpi ar naturālu kāpinātāju n sauc reizinājumu, kurā skaitlis a ņemts n reizes.

Piemērs:

43=4*4*4=64 (3)4=(3)(3)(3)(3)=81

  • Ja negatīva skaitļa kāpinātājs ir pāra skaitlis, tad skaitļa pakāpe ir pozitīvs skaitlis.

Piemērs:

(2)4=16

  • Ja negatīva skaitļa kāpinātājs ir nepāra skaitlis, tad pakāpe ir negatīvs skaitlis.

Piemērs:

(2)3=8

  • Ja kāpinātājs ir vesels negatīvs skaitlis.

1an=an

Piemērs: Pārveido par pakāpi!

18=123=23

1x4=x4

  • Ja a>0 un m, n ir naturāli skaitļi, tad amn=amn

Piemērs: Pārveido par pakāpi!

x53=x53

Kāpināšanas īpašības

  1. am*an=am+n
  2. am*bm=(ab)m
  3. am:an=amn
  4. anbn=(ab)n
  5. (am)n=amn
  6. (ab)n=(ba)n
  1. pakāpju reizināšana, ja bāzes ir vienādas;
  2. reizinājuma kāpināšana;
  3. pakāpju dalīšana, ja bāzes ir vienādas;
  4. dalījuma kāpināšana;
  5. pakāpes kāpināšana;
  6. dalījuma pakāpe ar negatīvu kāpinātāju.

Piemēri:

  1. x3*x6=x3+6=x9
  2. 23*53=103=1000
  3. 3836=38:36=386=32=9
  4. 8646=(84)6=26=64
  5. (y3)4=y3*4=y12
  6. (23)4=(32)4

Eksponentvienādojumu reducēšana uz pamatformu

Ir eksponentvienādojumi, kurus var reducēt formā af(x)=ag(x)[3][4]

! Šī veida vienādojumus, izmantojot pakāpju īpašības, reducē pamatformā af(x)=ag(x), no kurienes f(x)=g(x)), jo vienādām pakāpēm ar vienādām bāzēm kāpinātāji ir vienādi.

Eksponentvienādojuma risināšanas shēma parasti ir šāda:

  1. pāriet uz vienādām bāzēm;
  2. reducē vienādojumu uz pamatformu af(x)=ag(x);
  3. pāriet uz algebrisku vienādojumu;
  4. atrisina algebrisko vienādojumu;
  5. pieraksta atbildi.

Piemērs: Atrisināt vienādojumu 3x24=1

Risinājums:

3x24=30

x24=0

x2=4

x1=2 un x2=2

  • Tā kā eksponentfunkcijas definīcijas apgabals nav ierobežots, tad, risinot eksponentvienādojumu, definīcijas apgabala pārbaude vai analīze nav jāveic, izņemot tos gadījumus, kad eksponentvienādojuma kāpinātāji ar mainīgajiem satur kvadrātsaknes, logaritmus, kuru definīcijas apgabali ir ierobežoti.

Kopīgā reizinātāja iznešana ārpus iekavām

Ir eksponentvienādojumu veidi, kuros ir ērti iznest pirms iekavām kopīgo reizinātāju, kurš satur pakāpi ar mazāko kāpinātāju.[5]

Piemērs: Atrisināt vienādojumu 3x+23x=216

Risinājums:

3x+23x=216

3x*8=216

3x=27

x=3

Reducēšana uz algebriskiem vienādojumiem

Par algebriskiem vienādojumiem var reducēt tādus eksponentvienādojumus, kuros vairākās vietās kā darbības loceklis ir viena un tā pati bāze, kāpināta nezināmā x pakāpē, turklāt tā var būt kāpināta kvadrātā, daļas dalītājā u.c.[6]

Tādā gadījumā lieto substitūciju, šo darbības locekli apzīmējot ar jaunu mainīgo.

Piemērs: Atrisināt vienādojumu 4x9*2x+8=0

Risinājums:

4x=(22)x=22x=2x*2=(2x)2

(2x)29*2x+8=0

2x=y>0

y29y+8=0

y1=8 un y2=1

1)2x=8 un tātad x1=3

2)2x=1, tātad x2=0

Atsauces

Veidne:Atsauces