Grupa (matemātika)

No ''testwiki''
Pāriet uz navigāciju Pāriet uz meklēšanu
Attēlā redzamā Rubika kuba iespējamie manipulēšanas veidi veido grupu.

Grupa (Veidne:Val — 'kopa') abstraktajā algebrā ir algebriska struktūra ar vienu asociatīvu bināru operāciju, kurā eksistē vienības elements un katram elementam — tā inversais (jeb apgrieztais) elements. Matemātikas nozari, kurā tiek pētītas grupas, sauc par grupu teoriju.

Definīcija

Par bināru operāciju kopā G sauc tādu funkciju •: G × G → G, kas jebkuriem diviem kopas G elementiem x un y piekārto elementu Veidne:Nowrap, kas arī pieder kopai G (šeit simbols "•" nenozīmē reizināšanu, bet gan kādu abstraktu darbību). Lai pāris Veidne:Nowrap veidotu grupu, ir jāizpildās grupas aksiomām:

slēgtība[1]
Jebkuriem diviem kopas G elementiem x un y operācijas "•" rezultāts xy arī pieder kopai G.
asociativitāte
Jebkuriem trim kopas G elementiem x, y un z ir spēkā vienādojums Veidne:Nowrap begin(xy) • z = x • (yz).Veidne:Nowrap end
vienības elements
Eksistē tāds kopas G elements e, ka jebkuram kopas G elementam x izpildās īpašība Veidne:Nowrap beginex = xe = x.Veidne:Nowrap end
inversais elements
Katram kopas G elementam x eksistē tāds kopas G elements y, ka xy = yx = e, kur e ir vienības elements.

Formāli šīs aksiomas var pierakstīt šādi:

x,yG:xyG,x,y,zG:(xy)z=x(yz),eGxG:ex=xe=x,xGyG:xy=yx=e.

Atsauces un piezīmes

Veidne:Atsauces

Veidne:Matemātika-aizmetnis

Veidne:Autoritatīvā vadība

  1. Bieži vien slēgtību neiekļauj grupas aksiomu sarakstā, jo slēgtība izriet no tā, ka "•" ir bināra operācija kopā G.