Komutativitāte

No ''testwiki''
Versija 2021. gada 1. septembris, plkst. 18.39, kādu to atstāja imported>InternetArchiveBot (Izglābti 2 avoti un 0 atzīmēti par novecojušiem) #IABot (v2.0.8)
(izmaiņas) ← Senāka versija | skatīt pašreizējo versiju (izmaiņas) | Jaunāka versija → (izmaiņas)
Pāriet uz navigāciju Pāriet uz meklēšanu
Piemērs, kas ilustrē saskaitīšanas komutativitāti (3 + 2 = 2 + 3)

Matemātikā komutativitāte ir īpašība, kas var piemist vairākargumentu funkcijai un binārai operācijai. Intuitīvi komutativitāte nozīmē to, ka funkcijas vai bināras operācijas vērtība nav atkarīga no tās argumentu secības. Ja argumentus drīkst mainīt vietām, tad saka, ka tie komutē. To, cik lielā mērā argumenti komutē, raksturo to komutators.

Operācijas, kas nav komutatīvas, sauc par nekomutatīvām. Nekomutatīvu operāciju argumenti nekomutē (to, cik lielā mērā tie nekomutē, raksturo antikomutators). Viens no nekomutatīvu operāciju veidiem ir antikomutatīvas operācijas jeb operācijas, kas ir "maksimāli nekomutatīvas" (argumentus mainot vietām parādās mīnusa zīme).

Komutativitātei līdzīga īpašība ir asociativitāte. Asociativitāte nozīmē to, ka operāciju izpildes secībai nav nozīmes (nevis operācijas argumentu secībai).

Ja grupas operācija ir komutatīva, tad šādu grupu sauc par komutatīvu jeb Ābela grupu.

Definīcija

Vārds "komutativitāte" ir cēlies no franču valodas un pirmo reizi parādījās publikācijā 1814. gadā

Bināru operāciju "Veidne:Unicode" kopā S sauc par komutatīvu, ja jebkuriem diviem kopas S elementiem x un y izpildās īpašība x Veidne:Unicode y = y Veidne:Unicode x. Formāli to pieraksta šādi:

x,yS:xy=yx,

kur "∀" ir universālkvantors (lasa kā "visiem") un "∈" apzīmē piederību kopai (lasa kā "pieder"). Līdzīgi definē komutatīvu divargumentu funkciju:

x,yS:f(x,y)=f(y,x).

Šo definīciju var viegli vispārināt n argumentu funkcijai:

x1,,xnS,σSn:f(x1,,xn)=f(xσ(1),,xσ(n)),

kur Sn ir skaitļu no 1 līdz n visu permutāciju kopa.

Piemēri ikdienā

Komutatīvas darbības ikdienā

  • Kurpju uzvilkšana ir komutatīva, jo rezultāts nav atkarīgs no tā, vai vispirms uzvelk labo kurpi un tad kreiso, vai otrādi.
  • Monētu iemešana kafijas automātā ir komutatīva, jo nav svarīgi kādā secībā tās tiek iemestas, svarīga ir tikai kopējā summa.

Nekomutatīvas darbības ikdienā

  • Kurpju un zeķu uzvilkšana nav komutatīvas darbības, jo, vispirms uzvelkot kurpes un tad zeķes, iegūst būtiski atšķirīgu rezultātu, nekā vispirms uzvelkot zeķes un tad kurpes.
  • Veļas mazgāšana un žāvēšana nav komutatīvas darbības.

Piemēri matemātikā

Komutatīvas operācijas

Operācija Operācijas īpašība Piemērs
Saskaitīšana a + b = b + a 2 + 3 = 5,
3 + 2 = 5.
Reizināšana a · b = b · a 3 · 5 = 15,
5 · 3 = 15.

Nekomutatīvas operācijas

Operācija Operācijas īpašība Piemērs
Atņemšana abba 2 − 1 = 1,
1 − 2 = −1.
Dalīšana a / bb / a 3 / 1 = 3,
1 / 3 = 1 / 3.
Kāpināšana abba 23 = 8,
32 = 9.
Matricu
reizināšana
A · BB · A A=(0100),B=(0001),

AB=(0100)(0001)=(0100),BA=(0001)(0100)=(0000).

Funkciju kompozīcija fggf f(x) = 2x, g(x) = x + 1,
(fg)(x) = f(g(x)) = f(x + 1) = 2(x + 1) = 2x + 2,
(gf)(x) = g(f(x)) = g(2x) = 2x + 1.
Kvaternionu reizināšana a · bb · a i · j = k,
j · i = −k.

Skatīt arī

Ārējās saites